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Abstract. We reanalyze high resolution data from the New York Stock Exchange and find a monotonic
(but not power law) variation of the mean value per trade, the mean number of trades per minute and
the mean trading activity with company capitalization. We show that the second moment of the traded
value distribution is finite. Consequently, the Hurst exponents for the corresponding time series can be
calculated. These are, however, non-universal: The persistence grows with larger capitalization and this
results in a logarithmically increasing Hurst exponent. A similar trend is displayed by intertrade time
intervals. Finally, we demonstrate that the distribution of the intertrade times is better described by a
multiscaling ansatz than by simple gap scaling.

PACS. 89.75.-k Complex systems – 89.75.Da Systems obeying scaling laws – 05.40.-a Fluctuation
phenomena, random processes, noise, and Brownian motion – 89.65.Gh Economics; econophysics, financial
markets, business and management

Understanding the financial market as a self-adaptive,
strongly interacting system is a real interdisciplinary chal-
lenge, where physicists strongly hope to make essential
contributions [1–3]. The enthusiasm is understandable as
the breakthrough of the early 70’s in statistical physics
taught us how to handle strongly interacting systems with
a large number of degrees of freedom. The unbroken de-
velopment of this and related disciplines brought up sev-
eral concepts and models like (fractal and multifractal)
scaling, frustrated disordered systems, or far from equilib-
rium phenomena and we have obtained very efficient tools
to treat them. Many of us are convinced, that these and
similar ideas and techniques will be helpful to understand
the mechanisms of the economy. In fact, there have been
quite successful attempts along this line [4–6]. An ubiq-
uitous aspect of strongly interacting systems is the lack
of finite scales. The best understood examples are second
order equilibrium phase transitions where renormalization
group theory provides a general explanation of scaling and
universality [7]. It seems that some features of the stock
market can indeed be captured by these concepts: For ex-
ample, the so called inverse cube law of the distribution of
logarithmic returns shows a quite convincing data collapse
for different companies with a good fit to an algebraically
decaying tail [8,9].

Studies in econophysics concentrate on the possible
analogies, although there are important differences be-
tween physical and financial systems. This is, of course,
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a trivial statement — it is enough to refer to the above-
mentioned self-adaptivity, to the possibility of influencing
the system by its characterization or to the intrinsic non-
stationarity of economic processes. Here we would like to
emphasize the discrepancy in the levels of description. In
the case of a physical system undergoing a second order
phase transition, it is natural to assume scaling on pro-
found theoretical grounds and the (experimental or theo-
retical) determination of, e.g., the critical exponents is a
fully justified undertaking. There is no similar theoretical
basis for the financial market whatsoever, therefore in this
case the assumption of power laws should be considered
only as one possible way of fitting fat tailed distributions.
Also, the reference to universality should not be plausible
as the robustness of qualitative features — like the fat tail
of the distributions — is a much weaker property. There-
fore, e.g., averaging distributions over companies with very
different capitalization is questionable. While we fully ac-
knowledge the process of understanding based on analo-
gies as an important method of scientific progress, we em-
phasize that special care has to be taken in cases where
the theoretical support is sparse [10]. Motivated by this,
the aim of the present paper is to carry out a careful anal-
ysis of the high resolution data of the New York Stock
Exchange with special emphasis on the effects caused by
the size of the companies.

The paper is organized as follows. After the intro-
duction of notations in Section 1, Section 2 presents the
results on the capitalization dependence of various mea-
sures of trading activity. In Section 3 we show that the
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Fig. 1. Capitalization dependence of certain measures of trading activity in the year 2000. The graphs are monotonically
increasing and are (piecewise) well approximated by power laws as indicated. All three tendencies curve downward for large
capitalizations. (a) Mean value per trade 〈V 〉 in USD. The fitted slope corresponds to the regime 5 × 107 < C < 7.5 × 1010

in USD. (b) Mean number of trades per minute 〈N〉. The slope on the left is from a fit to C < 4.5 × 109 USD, while the one
on the right is for C > 4.5 × 109 USD. (c) Mean trading activity (exchanged value per minute) 〈f〉 in USD. The plots include
3347 stocks that were continuously available at NYSE during 2000.

distribution of the traded values is not Lévy stable as sug-
gested previously [11]. Consequently, the Hurst exponents
of the related time series exist, these are analyzed in Sec-
tion 4. We point out, that correlations in trading activity
are strongly non-universal with respect to company size,
and that the Hurst exponent of the traded value depends
logarithmically on the mean traded value per minute. Sec-
tion 5 deals with the time intervals between trades and we
give indications, that their distribution is better described
by a multiscaling ansatz than by gap scaling proposed ear-
lier [12]. Finally, Section 6 concludes.

1 Notations and data

For a given time window size ∆t, let the total traded value
(activity, flow) of the ith stock at time t be

f∆t
i (t) =

∑

n,ti(n)∈[t,t+∆t]

Vi(n), (1)

where ti(n) is the time when the nth transaction of the ith
stock takes place. This corresponds to the coarse-graining
of the individual events, or the so-called tick-by-tick data.
Latter is denoted by Vi(n), this is the value traded in
transaction n and it is a product of the price p and the
traded volume of stocks Ṽ ,

Vi(n) = pi(n)Ṽi(n). (2)

Price usually changes only a little from trade to trade,
while the number of stocks traded in consecutive deals
varies heavily. Thus, the fluctuations and the statistical
properties of the traded value f(t) are basically governed
by those of Ṽ . Price only serves as a conversion factor
to US dollars, that makes the comparison of stocks possi-
ble. This way, one also automatically corrects the data for
stock splits. The statistical properties (normalized distri-
bution, correlations, etc.) are otherwise practically indis-
tinguishable between traded volume and traded value.

As the source of empirical data, we used the TAQ
database [13] which records all transactions of the New
York Stock Exchange in the years 1993–2003.

Finally, we note that throughout the paper we use
10-base logarithms.

2 Capitalization and basic measures
of trading activity

Many previous studies of trading focus on the stocks of
large companies. These certainly have the appealing prop-
erty that price and returns are well defined even on short
time scales due to the high frequency of trading. For infre-
quently traded stocks, there are extended periods without
transactions, and thus prices and returns are undefined. In
contrast, other quantities regarding the activity of trad-
ing, such as traded value/volume or the number of trades
can be defined, even for those stocks where they are zero
for most of the time.

In this section we extend the study of Zumbach [14]
which concerned companies of the top two orders of mag-
nitude in capitalization at the London Stock Exchange.
Instead, we analyze the 3347 stocks1 that were traded con-
tinuously at NYSE for the year 2000. This gives us a range
of approximately 106 . . . 6 × 1011 USD in capitalization.

Following reference [14], we quantify the dependence
of trading activity on company capitalization Ci. Mean
value per trade 〈Vi〉, mean number of trades per minute
〈Ni〉 and mean activity (traded value per minute) 〈fi〉 are
plotted versus capitalization in Figure 1. Reference [14]
found that all three quantities have power law dependence
on Ci, however, this simple ansatz does not seem to work
for our extended range of stocks. While mean trading ac-
tivity can be approximated as 〈fi〉 ∝ C0.98±0.06

i to an
acceptable quality, neither 〈V 〉 nor 〈N〉 can be fitted by

1 Note that many minor stocks do not represent actual com-
panies, they are only, e.g., preferred class stocks of a larger
enterprise.
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Fig. 2. Plot of mean value per trade 〈V 〉 versus mean num-
ber of trades per minute 〈N〉 for the year 2000 of NYSE. For
smaller stocks there is no clear tendency. For the top ∼1600
companies (〈N〉 > 0.05 trades/min), however, there is scal-
ing with an exponent β = 0.57 ± 0.08. Note: the plot includes
3347 stocks that were continuously available at NYSE during
2000. Note: the first few points correspond to stocks that are
traded less than daily. These typically do not represent indi-
vidual companies and might be traded according to different
rules. However, unlike prices or returns, V , N and f still re-
main well-defined quantities for such stocks.

a single power law in the whole range of capitalization.
Nevertheless, there is — not surprisingly — a monotonic
dependence: higher capitalized stocks are traded more in-
tensively.

One can gain further insight from Figure 2, which
shows, that for the largest 1600 stocks

〈Vi〉 ∝ 〈Ni〉β (3)

with β = 0.57 ± 0.09. The estimate based on the re-
sults of Zumbach [14] for the stocks in London’s FTSE-
100, is β ≈ 1. Similar results were recently obtained for
NASDAQ [15].

For the smaller stocks there is no clear tendency. This
effect can be interpreted as follows. As we move to stocks
with smaller and smaller capitalization, the average trans-
action size 〈V 〉 cannot decrease indefinitely. Transaction
costs must impose a minimal number/value of stocks in a
single transaction that can still be exchanged profitably.
This minimal size is observed as the constant regime
for small 〈N〉. On the other hand, once a stock is ex-
changed more frequently (the crossover happens at about
〈N〉 = 0.05 trades/min), it is no more traded in this “min-
imal” unit. With the growing speed of trading, trades tend
to “stick together”, it is possible to exchange larger pack-
ages. This increase is clear, but not dramatic, it is up to
one order of magnitude. Although increasing package sizes
reduce transaction costs, price impact [16–19] increases,
possibly decreasing profits and thus limiting package sizes.
The interplay of these two effects has a role in the forma-
tion of relationship (3).

Fig. 3. Distributions of traded value in ∆t = 15 min time win-
dows, divided by the mean. The plot displays three example
stocks for the period 1994–1995. The numbers show some up-
per quantiles of the distribution (probability of values higher
than indicated by the corresponding dashed line). The dashed
and solid diagonal lines represent power-laws with exponents
corresponding to λ = 1.7 and 2.2, respectively.

3 Traded value distributions revisited

The statistical properties of the trading volume of stocks
has previously been investigated in reference [11]. That
work finds that the cumulative distribution of traded vol-
ume in ∆t = 15 minute windows has a power-law tail with
a tail exponent λ = 1.7± 0.1. This is the so called inverse
half cube law. Formally, this corresponds to

P∆t(f) ∝ f−(λ+1), (4)

where P∆t is the probability density function of traded
volume (value) on a time scale ∆t.

Ever since, great effort was devoted to explain this
exponent in terms of the inverse cube law of stock re-
turns [8,16,17]. However, the exact distribution and the
possible exponents are still much debated [18,20], and
it has been shown that the shape of such a distribution
depends systematically on the capitalization of the com-
pany [21].

The estimation of the tail exponent is a delicate mat-
ter. Following the methodology of reference [11] — and for
the same 1994–1995 period of data – we repeated these
measurements. Our results for the ∆t = 15 min distribu-
tion are shown in Figure 3 for three majors stocks. The
tails of these distributions can be fitted by a power law
over an order of magnitude, for the top 5–10% of the
events. The exponent λ we find, is significantly higher than
1.7, it is around 2.2 for these examples.

For systematic calculations of λ, there is a range of
mathematical tools available. We used three variants of
Hill’s method [22,23] to estimate the tail exponent, details
can be found in Appendices A and B. All three have a com-
mon parameter: the number k of largest events that belong
to the tail. The statistical weight associated with the tail
events is p = k/L, where L is the total length of our time
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series. From Figure 3 one can see, that p ≈ 5–10% is the
proper choice as a threshold for the asymptotic regime.

For the two-year period 1994–1995 and separately for
the single year 2000, we took the 1000 stocks with the
highest total traded value in the TAQ database. We de-
trended their trading activity by the well known U -shaped
intraday pattern (see, e.g., Ref. [24]). Then, we calculated
the distribution of λ over these stocks. The median and
the width of this distribution (characterized by the half
distance of the 25% and 75% quantiles) is shown in Ta-
bles 1 and 2 for various time windows ∆t.

The choice p = 0.06 in Hill’s method provides results
in line with reference [11]. For ∆t = 15 min time win-
dows, one finds λ = 1.71± 0.20 for the period 1994–1995.
However, other estimates are significantly higher, λ > 2.
Moreover, two estimators show a strong tendency of in-
creasing λ with increasing time windows. Monte Carlo
simulations on surrogate datasets show, that this is be-
yond what could be explained by decreasing sample size.
It is well known, that for λ < 2 the distribution would have
to converge to the corresponding Levy distribution when
∆t → ∞. The measured λ’s should also be independent
of ∆t. On the other hand, for λ > 2, the ∆t → ∞ limit
distribution is a Gaussian. Accordingly, for finite samples,
the measured effective value of λ increases with ∆t. This
systematic dependence makes us conclude that there is a
strong indication for the existence of the second moment.

One must keep in mind, that all three methods as-
sume that the variable is asymptotically distributed as
equation (4) and none of them proves it. If this does not
hold, then the estimates of exponents are only a paramet-
ric characterization of the unknown functional form, nev-
ertheless, they do suggest that the second moments exist.
If the distribution is indeed of the limiting form (4), then
although for short time windows (∆t < 60 min) there is a
fraction of stocks whose estimate gives λ < 2, even those
display λ > 2 for larger ∆t.

Based on these results we conclude that the second
moments of the distribution must exist for any ∆t, there-
fore the calculation of the Hurst exponent for the related
time series is meaningful. Similar qualitative features were
found for the years 2001 and 2002 [25].

4 Non-universality of correlations in traded
value time series

Scaling methods [26–28] have long been used to charac-
terize a wide variety of time series, including stock prices
and trading volumes [4,5]. In particular, the Hurst expo-
nent H(i) is usually calculated. For the traded value time
series f∆t

i (t) of stock i, it is defined as

σ2
i (∆t) =

〈(
f∆t

i (t) − 〈
f∆t

i (t)
〉)2

〉
∝ ∆t2H(i), (5)

where the average is taken over the time variable t. As
discussed in Section 3, the variance on the left hand side
exists for any stock or time scale ∆t.

Fig. 4. The Hurst exponent of traded value f shows loga-
rithmic dependence on the average traded value per minute
〈f〉. For intraday fluctuations (�), correlations in 〈f〉 are
weak, H ≈ 0.5–0.6, the fitted slope is γ(∆t < 250 min) =
0.016 ± 0.001. Beyond the daily scale (�) the effect increases:
the smallest stocks show almost no correlation (H ≈ 0.5), while
large ones display strong persistence (H ≈ 0.9). The fitted
slope is γ(∆t > 630 min) = 0.063± 0.002. The inset shows the
two regimes of correlation strength for the single stock Wal-
Mart (WMT) on a log-log plot of σ(∆t) versus ∆t. The slopes
corresponding to Hurst exponents are 0.65 and 0.8.

Reference [11] finds strong correlations in
√

f∆t
i (t)

with H ≈ 0.83. Their analysis comprises the 1000 largest
companies in the period 1994–1995 and they use ∆t > 1
day except for some very frequently traded stocks.

We extend these measurements to all 2647 stocks that
were continuously traded in the period 2000–2002. The
time series display a crossover from a lower to a higher
value of H(i) around the time scale of one day (for an
example, see the inset of Fig. 4). A similar effect was re-
ported for intertrade times of large companies [12]. In-
traday correlations are not meaningful for some of the
smallest companies as their shares are often not exchanged
for several days. Nevertheless, for any choice of time win-
dows, one recovers a tendency: With the change of average
traded value 〈fi〉, there is a clear logarithmic trend in the
Hurst exponent, especially above the daily scale:

H(i) = H(i = 1) + γ log 〈fi〉 , (6)

where normalization is so that 〈fi=1〉 = 1. Measurement
results and values of γ are given in Figure 4. Calculations
for the periods 1994–1995 and 1998–1999 show qualita-
tively similar properties. On the grounds of a new type
of scaling law [24], this effect can be predicted analyti-
cally [15]. Here we only focus on the description of the
phenomenon.

Trading activity of very small stocks shows nearly no
persistence. Even for ∆t > 1 day, H ≈ 0.5. This changes
as one moves to larger and larger companies. Their trad-
ing can be more correlated in the regime ∆t > 1 day, up
to H ≈ 0.9. This is a clear sign of non-universality. The
very nature of trading differs for different company sizes
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Table 1. Median of the tail exponents of traded value calculated by three methods for 1994−1995. The width of the distributions
is given with the half distance of the 25% and 75% quantiles.

∆t Hill’s method (p = 0.06) Shifted Hill’s λ Shifted Hill’s ϕ Fraga Alves (p = 0.1)

1 min 1.43 ± 0.09 2.15 ± 0.15 3.0 1.98 ± 0.25
5 min 1.56 ± 0.13 2.29 ± 0.25 2.8 2.04 ± 0.25
15 min 1.71 ± 0.20 2.55 ± 0.35 2.8 2.1 ± 0.3
60 min 2.06 ± 0.30 2.85 ± 0.45 1.8 2.1 ± 0.4
120 min 2.3 ± 0.4 3.15 ± 0.70 1.6 2.1 ± 0.4
390 min 2.7 ± 0.6 3.7 ± 0.9 1.2 no estimate

Table 2. Median of the tail exponents traded value calculated by three methods for 2000. The width of the distributions is
given with the half distance of the 25% and 75% quantiles.

∆t Hill’s method (p = 0.06) Shifted Hill’s λ Shifted Hill’s ϕ Fraga Alves (p = 0.1)
1 min 1.63 ± 0.13 2.40 ± 0.23 2.6 2.16 ± 0.25
5 min 1.91 ± 0.25 2.8 ± 0.5 2.4 2.30 ± 0.35
15 min 2.15 ± 0.40 3.1 ± 0.6 2.0 2.35 ± 0.40
60 min 2.6 ± 0.5 3.45 ± 0.8 1.2 2.2 ± 0.4
120 min 2.8 ± 0.6 3.8 ± 1.1 1.2 no estimate
390 min 3.2 ± 1.0 5.1 ± 0.8 1.6 no estimate

and statistics such as “distributions of Hurst exponents”
are meaningless. No typical value exists, the trend is sys-
tematic and continuous. As Hurst exponents are closely
related to the multifractal spectra [26,29] of f , those can-
not be universal either. This raises doubts about an “av-
erage multifractal spectrum” as calculated in, e.g., refer-
ence [30].

Systematic dependence of the exponent of the power
spectrum of the number of trades on capitalization was
previously reported in reference [31], based on the study
of 88 stocks. This quantity is closely related to the Hurst
exponent for the time series of the number of trades per
unit time (see Ref. [12]). Direct analysis finds a strong
dependence of the Hurst exponent of N on 〈N〉, but no
such clear logarithmic trend as equation (6) [25].

5 Multiscaling distribution of intertrade times

Finally, we analyzed the intertrade interval series Ti(n =
1 . . .Ni−1), defined as the time spacings between the n’th
and n + 1’th trade [32]. Ni is the total number of trades
for stock i during the period under study.

Previously, reference [12] used 30 stocks from the TAQ
database for the period 1993–1996 and proposed that the
distribution of Ti scales with the mean 〈Ti〉 as

P(T, 〈T 〉) =
1

〈T 〉F (T/ 〈T 〉), (7)

and the universal scaling function F is well modeled by a
Weibull distribution of the form

F (x) =
δ

X

( x

X

)δ−1

exp
[
−

( x

X

)δ
]

, (8)

where X ≈ 0.94 and δ ≈ 0.72 for all the 30 stocks, with
some statistical deviations.

We analyzed the data by including a large number of
stocks with very different capitalizations. First it has to
be noted that the mean intertrade interval has decreased
drastically over the years. In this sense the stock market
cannot be considered stationary for periods much longer
than one year. We analyze the two year period 1994–1995
(part of that used in Ref. [12]) and separately the single
year 2000. We use all stocks in the TAQ database with
〈T 〉 < 105 s, a total of 3924 and 4044 stocks, respectively.

In order to check the validity of the gap scaling for-
mula, we divided the stocks into two groups2 with respect
to 〈T 〉. Then, we generated the distribution of T/ 〈T 〉 for
the groups, a comparison for the year 2000 is shown in Fig-
ure 5. This already raises doubts about the generality of
equation (8): the tails of the distribution seem to possess
more weight for the group with small 〈T 〉 (blue chips). The
direct visual comparison of these distributions is, however,
not always a reliable method to evaluate universality. In-
stead, we take a less arbitrary, indirect approach.

The consequence of the universal distribution (7)
would be that the moments of T should show gap scal-
ing: the difference between the exponents of the q-th and
q + 1-th moments is independent of q. [33,34]:

〈T q
i 〉 = C(q) 〈Ti〉−τ(q)

, (9)

with a scaling function3 −τ(q) ≡ q.
Instead, we find a systematic dependence of −τ on q,

see Figure 6 for several examples of fitting and Figure 7 for
all results. There is good fit to a power law of type (9) for
4 orders of magnitude in 〈T 〉, with non-trivial exponents.

2 The groups were constructed to have an approximately
equal total number of trades. Small 〈T 〉 (top 246 stocks): 6.48 s
< 〈T 〉 < 47.8 s (other 3797 stocks), large 〈T 〉: 47.8 s < 〈T 〉 <
105 s.

3 We keep the negative sign to conform with usual conven-
tions.
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Fig. 5. The distribution of T/ 〈T 〉 in the year 2000 for two
groups of stocks with different mean intertrade times 〈T 〉. The
group with the most frequently traded stocks (blue chips) has
a considerably greater weight for waiting times. This implies
that the distribution P(T, 〈T 〉) may not be universal.

Fig. 6. Scaling of integer moments of T , q = 1, 2, 4, 6, 8, 12, 16
(increasing from bottom to top). The plot shows 〈T q〉1/q / 〈T 〉,
the slopes correspond to −τ (q)/q − 1. If the normalized distri-
bution of T were universal, the points would align on horizontal
lines. Note: the points were shifted vertically for better visibil-
ity. Only 400 points are shown per moment, the sample period
was 1994–1995.

The intuitive meaning of −τ(q � 1) < q is simple:
Intertrade times of larger (more frequently traded) stocks
exhibit larger relative fluctuations. In line with our ob-
servation from Figure 5, this difference must come from
the tail of the distribution, as the deviation becomes more
pronounced for higher moments.

The absence of simple universal scaling raises the
question of the capitalization dependence of the Hurst
exponent for the time series Ti, defined analogously to

Fig. 7. Scaling exponents for the moments of intertrade inter-
val distributions defined in equation (9). The values −τ (q) ≡ q
would imply a universal distribution that is independent of
stock. The fact that −τ (q)/q < 1, shows less frequently traded
stocks display relatively lower variations in their trading dy-
namics. For large q, the effect increases monotonically with q.
This suggests a difference between small and large stocks in the
tail of the distribution, which corresponds to longer periods of
inactivity.

equation (5) as

σ2
i (N) =

〈(
N∑

n=1

Ti(n) −
〈

N∑

n=1

Ti(n)

〉)2〉
∝ N2HT (i).

(10)
The data show a crossover, similar to that for the traded
value f , from a lower to a higher value of HT (i) when
the window size is approximately the daily mean num-
ber of trades (for an example, see the inset of Fig. 8).
For the restricted set studied in reference [12], the value
HT ≈ 0.94 ± 0.05 was suggested for window sizes above
the crossover.

Much similarly to the case of traded value Hurst expo-
nents analyzed in Section 4, the inclusion of more stocks4
reveals the underlying systematic non-universality. Again,
less frequently traded stocks appear to have weaker au-
tocorrelations as HT decreases monotonically with grow-
ing 〈T 〉. One can fit an approximate logarithmic law5,6 to
characterize the trend:

HT = HT (〈T 〉 = 1) + γT log 〈T 〉 , (11)

4 For a reliable calculation of Hurst exponents, we had to
discard those stocks that had less than 〈N〉 < 10−3 trades/min
for 1994–1995 and 〈N〉 < 2 × 10−3 trades/min for 2000. This
filtering leaves 3519 and 3775 stocks, respectively.

5 As intertrade intervals are closely related to the number of
trades per minute N(t), it is not surprising to find the similar
tendency for that quantity [31].

6 Note that for window sizes smaller than the daily mean
number of trades, intertrade times are only weakly correlated
and the Hurst exponent is nearly independent of 〈T 〉. This is
analogous to what was seen for traded value records in Sec-
tion 4.
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Fig. 8. Hurst exponents of Ti for time windows greater than
1 day, plotted versus the mean intertrade time 〈Ti〉. Stocks that
are traded less frequently, show markedly weaker persistence
of T for time scales longer than 1 day. The dotted horizontal
line serves as a reference. We used stocks with 〈T 〉 < 105 s,
the sample period was 1994–1995. The inset shows the two
regimes of correlation strength for the single stock General
Electric (GE) on a log-log plot of σ(N) versus N . The slopes
corresponding to Hurst exponents are 0.6 and 0.89.

where γT = −0.10 ± 0.02 for the period 1994 − 1995 (see
Fig. 8) and γT = −0.08 ± 0.02 for the year 2000 [25].

In their recent preprint, Yuen and Ivanov [35] inde-
pendently show a tendency simimar to (11) for intertrade
times of NYSE and NASDAQ in a different set of stocks.

6 Conclusions

In this paper we revisited some “stylized facts” of stock
market data and found in several ways alterations from
earlier conclusions. The main difference in our approach
was — besides the comparative application of extrapola-
tion techniques — the extension of the range of capital-
ization of the studied firms. This enabled us to investigate
the dependence of the trading characteristics on capital-
ization itself. In fact, in many cases we found fundamental
dependence on this parameter.

We have shown that trading activity 〈f〉, the number
of trades per minute 〈N〉 and the mean size of transac-
tions 〈V 〉 display non-trivial, but monotonic dependence
on company capitalization.

We have given evidence that the distribution of traded
value in fixed time windows is not Levy stable. If a power
law is fitted to the tail of the distribution, a careful anal-
ysis yields to an exponent λ, which is — even for short
time windows — in most cases greater than 2, and then
increases with increasing time window indicating the ex-
istence of the second moment of the distribution. Con-
sequently, the Hurst exponent H for its variance can be
defined and it depends on the mean trading activity 〈f〉 as

H(i) = H(i = 1) + γ log 〈fi〉 .

The mean transaction size can be fitted to a power-law
dependence on the trading frequency for moderate to large
companies.

The distribution of the waiting times between trades
is better described by multiscaling than by gap scaling.
It is characterized by an increase in both correlations and
relative fluctuations with growing trading frequency (i.e.
increasing capitalization).

Our findings indicate that special care must be taken
when concepts like scaling and universality are applied to
financial processes. The modeling of the market should
be extended to the capitalization dependence of the char-
acteristic quantities and this seems a real challenge at
present.
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Györgyi for his insights on correlated time series. They also
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Appendix A: The estimation
of tail exponents λ

In the following, for every measurement we give the me-
dian estimates of λ for the 1000 stocks with highest traded
value during the investigated period. The error bars show
the half distance between the 25% and 75% quantiles of λ.

A.1 Hill’s estimator

Hill’s estimator [22] is a statistically consistent method
to estimate the tail exponent λ from random samples
taken from a distribution that asymptotically has the
power-law form (4). The procedure first sorts the sample
f(t = 1 . . . L) in decreasing order. We are going to denote
this series by f [t], so that f [1] > f [2] > f [3] > . . . . Then,
one defines the tail of the distribution by setting an arbi-
trary number k of points to be included in the estimation
procedure. The estimate of the inverse tail exponent is

λ̂−1(k) =

[
1

(k − 1)

k−1∑

t=1

log f [t]

]
− log f [k], (A.1)

given that k → ∞ and p = k/L → 0. If the sampled
distribution is of the form (4), then by increasing k, the
estimator converges rapidly to the actual value of λ−1.
However, in the case of traded value data, this turns out
not to be the case.

The inset of Figure A.1a — a so called Hill plot —
shows, that there is a systematic dependence of λ on p and
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Fig. A.1. (a) Hill’ s estimates of λ for different sizes of the time window with the tail probability set as p = 0.06. The monotonic
trend indicates that the distribution is not be Levy stable. The inset shows, that for ∆t = 15 min the effective tail exponent λ
depends monotoncally on the choice for tail probability p. Thus, Hill’s estimates are unreliable, because they depend strongly
on an arbitrary parameter. (b) Dependence of the Hill plots for ∆t = 15 min on the shifting constant ϕ. The values of ϕ from
bottom to top: 0 (�), 1 (�), 2.8 (�, optimal shift), 3.0 (�). Typical error bars are given on the right, darker gray indicates the
regimes where they overlap. (c) Hill plots of the optimally shifted Hill’s estimators for various time windows. The values of ∆t
from bottom to top: 1 min (�), 5 min (�), 15 min (�), 60 min (�), 120 min (�), 390 min (�). One finds λ > 2 and the strong
increasing tendency in λ with ∆t implies that the distribution is not Levy stable. (d) Hill plots of the Fraga Alves estimator for
three time window sizes ∆t: 1 min (�), 15 min (�), 60 min (�). The method gives a lower estimate of λ ≈ 2.

no convergence is observed. With the inclusion of less tail
events, the exponent increases sharply, beyond the λ = 2
threshold for Lévy stability. Further evidence for the lack
of Lévy stability is that on increasing the time scale ∆t,
the estimated tail exponents also increase further as shown
in Figure A.1a.

This type of behavior is not new to mathematical
statistics (see, e.g., Ref. [23]). It is possible, that the dis-
tribution decays faster than a power law and thus no finite
λ exists. Alternatively, the power law may not be centered
around zero, but instead it can be of the form

P∆t(f) ∝ (f + f0)
−(λ+1) . (A.2)

In this latter case, there is a finite λ, but as the sample size
T is usually too small, the estimator displays the above
bias. One can either try to approximate the value of f0

and shift the data accordingly, so that Hill’s estimator
converges properly, or try to find another estimator that
is insensitive to this shifting constant.

We have tried both approaches and they yielded qual-
itatively similar results.

A.2 Shifted Hill’s estimator

One can apply Hill’s estimator to the points f [t =
1 . . . L] + ϕ 〈f〉, where ϕ is a constant parameter and look
for a value, where the estimator λ(k) becomes indepen-
dent7 of k, i.e., Hill’s estimator truly finds a power-law
decay that is now consistent with equation (A.2). This
happens, when ϕ 〈f〉 = f0. How this shift by ϕ 〈f〉 af-
fects the Hill plots is shown in Figure A.1b for the case of
∆t = 15 min. One finds, that in this case ϕ ≈ 2.8 gives

7 More precisely, we increased ϕ from 0 by increments of 0.2
and looked for λ(k, ϕ) ≈ λ(ϕ). The method is very sensitive to
the proper choice of ϕ. For high values of ∆t, there is a low
number of data points, and the estimates of λ may be very
noisy. In this case we chose ϕ, where the estimate of λ is lower.
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reasonable results, while λ = 2.55 ± 0.35. One can repeat
the procedure for various time scales ∆t. The median Hill
plots are shown in Figure A.1c, while λ(∆t) and ϕ(∆t) are
given in Table 1. Again, one finds a significant increase of
the tail exponent with growing ∆t. This underlines our
previous expectation that traded value distributions are
not Lévy stable and thus have a finite variance.

A.3 Fraga Alves estimator

A more sophisticated approach to estimate tail exponents
of distributions of the type (A.2), is a recent variant of
Hill’s method, proposed by Fraga Alves [23]. The algo-
rithm is described in detail in Appendix B and its esti-
mates of λ are — in an exact mathematical sense — in-
dependent of the shift f0 present in the density function,
unlike those of the original Hill’s estimator (A.1).

We applied the estimator to the same dataset, the Hill
plots for ∆t = 1, 15, 60 min are shown in Figure A.1d.
What one finds is a very different behavior from the shifted
Hill’s estimator. The estimate of λ increases with growing
p, i.e., the more points included. This is due to that the
Fraga Alves estimator converges much slower than Hill’s
estimator, and — as Figure A.1d and Monte Carlo simu-
lations on surrogate datasets indicate — it converges from
below. On the other hand, setting the threshold as high
as p = 0.1 may include events that no more belong to the
power law regime, which also results in a reduced, effective
exponent due to the shape of the distribution, shown in
Figure 3. Consequently, this method provides a lower esti-
mate of λ. Still, the calculated values are mostly above 2.
Finally, one must note that for ∆t ≥ 120 min, the number
of points was inadequate to provide any proper estimate
at all.

Appendix B: The algorithm of the Fraga Alves
estimator

Reference [23] describes a method to approximate the pa-
rameter λ from a sample of a random variable that is
asymptotically distributed as

P∆t(f) ∝ (f + f0)−(λ+1).

First, one sorts the sample f(t = 1 . . . L) in decreasing
order. We denote this series by f [t], so that f [1] > f [2] >
f [3] > . . . Then, the procedure consists of the five steps
formulated below:

1. k∗
0 = 2k2/3

2.

λ̂−1(k∗
0 , k) =

1
k∗
0 − 1

k∗
0−1∑

t=1

log
f [t] − f [k]
f [k0] − f [k]

3.
k0 = C

1/(2λ̂−1(k∗
0 ,k)+1)

0 kα,

where

C0 =
(1 + λ̂−1(k∗

0 , k))2

2λ̂−1(k∗
0 , k)

,

and

α =
2λ̂−1(k∗

0 , k)

2λ̂−1(k∗
0 , k) + 1

.

4.

λ̂−1(k0, k) =
1

k0 − 1

k0−1∑

t=1

log
f [t] − f [k]
f [k0] − f [k]

.

5. Finally, the estimate of the inverse tail exponent is
given by

λ−1(k0, k) = λ̂−1(k0, k) −
√

λ̂−1(k0, k)
2k0

.

λ−1(k0, k) converges to the inverse tail exponent, if
L → ∞, k/L → 0 and k0/k → 0.

References

1. The Economy As an Evolving Complex System, edited by
P.W. Anderson, Santa Fe Institute Studies in the Sciences
of Complexity Proceedings (1988)

2. The Economy As an Evolving Complex System II:
Proceedings, edited by W.B. Arthur, S.N. Durlauf, D.A.
Lane, Santa Fe Institute Studies in the Sciences of
Complexity Lecture Notes (1997)

3. Econophysics: An Emergent Science, edited by J. Kertész,
I. Kondor, http://newton.phy.bme.hu/∼kullmann/

Egyetem/konyv.html (1997)
4. J.-P. Bouchaud, M. Potters, Theory of Financial Risk

(Cambridge University Press, Cambridge, 2000)
5. R.N. Mantegna, H.E. Stanley, Introduction to

Econophysics: Correlations and Complexity in Finance
(Cambridge University Press, 1999)

6. B.B. Mandelbrot, Fractals and scaling in finance:
Discontinuity, concentration, risk (1997)

7. L.E. Reichl, A Modern Course in Statistical Physics, 2nd
edn. (Wiley, 1998)

8. P. Gopikrishnan, M. Meyer, L.A.N. Amaral, H.E. Stanley,
Eur. Phys. J. B 3 139 (1998)

9. T. Lux, Applied Financial Economics 6, 463 (1996)
10. M. Gallegatti, S. Keen, T. Lux, P. Ormerod,

Worrying Trends in Econophysics, available from
http://www.unifr.ch.econophysics/, to appear in
Physica A

11. P. Gopikrishnan, V. Plerou, X. Gabaix, H.E. Stanley,
Phys. Rev. E 62, 4493 (2000)

12. P.Ch. Ivanov, A. Yuen, B. Podobnik, Y. Lee, Phys. Rev.
E 69, 56107 (2004)

13. Trades and Quotes Database for 1993–2003, New York
Stock Exchange, New York

14. G. Zumbach, Quantitative Finance 4, 441 (2004)
15. Z. Eisler, J. Kertész, Phys. Rev. E 73, 046109 (2006)
16. X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley,

Nature 423, 267 (2003)
17. V. Plerou, P. Gopikrishnan, X. Gabaix, H.E. Stanley,

Quantitative Finance 4, C11 (2004)



154 The European Physical Journal B

18. J.D. Farmer, F. Lillo, Quantitative Finance 4, C7 (2004)
19. J.D. Farmer, L. Gillemot, F. Lillo, S. Mike, A. Sen,

Quantitative Finance 4, 383 (2004)
20. S.M.D. Queirós, Europhys. Lett. 71, 339 (2005)
21. F. Lillo, R.N. Mantegna, Phys. Rev. E 62, 6126 (2000)
22. B.M. Hill. Annals of Statistics 3, 1163 (1975)
23. M.I. Fraga Alves, Extremes 4, 199 (2001)
24. Z. Eisler, J. Kertész, S.-H. Yook, A.-L. Barabási. Europhys.

Lett. 69, 664 (2005)
25. Data available upon request
26. T. Vicsek. Fractal Growth Phenomena (World Scientific

Publishing, 1992)
27. C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E.

Stanley, A.L. Goldberger, Phys. Rev. E 49, 1685 (1994)
28. J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde,

S. Havlin, A. Bunde, H. Eugene Stanley, Physica A 316,
87 (2002)

29. R.C. Ball, O.R. Spivack, J. Phys. A: Math. Gen. 23, 5295
(1990)

30. J. Kwapien, P. Oswiecimka, S. Drozdz. Physica A 350, 466
(2005)

31. G. Bonanno, F. Lillo, R.N. Mantegna, Physica A 280, 136
(2000)

32. E. Scalas, R. Gorenflo, H. Luckock, F. Mainardi,
M. Mantelli, M. Raberto. Quantitative Finance 4, 695
(2004)

33. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I.
Shraiman. Phys. Rev. A 33, 1141 (1986)

34. K.P.N. Murthy, K.W. Kehr, A. Giacometti, Phys. Rev. E
53, 444 (1996)

35. A. Yuen, P.Ch. Ivanov, Impact of stock market mi-
crostructure on intertrade time and price dynamics, 2005
arXiv:physics/0508203


